A Bird’s Eye View: Progress & Challenges in the Diagnosis & Treatment of Idiopathic Hypersomnia

David Rye MD-PhD
Professor of Neurology, Emory University
drye@emory.edu

Disclosures

Fees for service from: UCB Pharmaceuticals, Jazz Pharma, Xenoprot, Flamel Technologies (Avadel), Balance Therapeutics, Major League Baseball, several law firms as an expert witness, as well as patients and several branches of the US government (USPHS, USSS).

US Patent US9616070B2: Use of GABA-A receptor antagonists for the treatment of excessive sleepiness and disorders associated with excessive sleepiness

Patent (submitted/pending) PCT/US18/32114: Treatment of Conditions Associated with Myotonic Dystrophy

Royalties: as inventor for sale/transfer of use and technology US9616070B2 to Balance Therapeutics
Progress on Many Fronts:

Awareness: Increasing (patients, providers, & researchers)

Diagnostics: Getting beyond the MSLT, but still a long road ahead

Causes: New and greater insights into the biology underlying many instances of ‘idiopathic’ hypersomnia

Cure: Symptomatic treatment choices are increasing, and new commercial interests are entering the arena

Resources: Growing from diverse sources – government (NIH), foundations, industry, and philanthropic

Increased Attention at Professional Sleep Meetings:

APSS 2016 | Denver, CO

Hypersomnolence: Diagnostic, scientific, and treatment challenges

LM Trotti (Chair), J Black; D Plante, D Rye, P Zee

World Sleep Congress 2017 | Prague

Idiopathic hypersomnia: A neglected disorder

Arnulf (Chair), K Sonka, D Rye, G Mayer

When 11 hours aren't enough: The rare disorder of perpetual sleepiness

Idiopathic hypersomnia and “healthy sleep” among topics of national conference in Denver

By Kevin Simpson | ksimpson@denverpost.com | June 9, 2016 at 3:09 pm
Memorable Comments at the 2017 World Sleep Society Congress in Prague

“The MSLT has lead us astray in the study of hypersomnia” – E. Mignot

“The MSLT is not the way to capture the phenotype of these (idiopathic hypersomnia) patients” – I. Arnulf

“The concept of Narcolepsy Type 2 is becoming more and more meaningless” – E. Mignot

“I believe idiopathic hypersomnia & Narcolepsy Type 2 to be the same disease” – M. Partinen

“Idiopathic hypersomnia with long sleep seems an independent clinical entity with a strong genetic predisposition” – S. Nevsimalova

Scientific Publications / 5 Year Periods

Source: ISI Web of Science search
US Prevalence of IH versus any Narcolepsy / 100,000 Persons Insurance Claims Data (Symphony Health)

Patient ‘Registries’

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th># Centers</th>
<th>Year Updated</th>
<th># Narcolepsy Cases</th>
<th># IH Cases</th>
<th>Biospecimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU – Narcolepsy Network</td>
<td>Europe</td>
<td>37</td>
<td>2015</td>
<td>542 (NT1) 120 (NT2)</td>
<td>38 (IH)</td>
<td>Yes (some)</td>
</tr>
<tr>
<td>NarcoBank</td>
<td>France</td>
<td>3</td>
<td>2017</td>
<td>290 (NT1)</td>
<td>221 (IH) 168 Females 53 Males</td>
<td>Yes: CSF DNA</td>
</tr>
<tr>
<td>Emory Sleep Center</td>
<td>United States</td>
<td>1</td>
<td>2018</td>
<td>~ 110 (NT1) ~ 220 (NT2)</td>
<td>~ 560 IH + other hypersomnia</td>
<td>Whole blood > 850 CSF > 550 Fibroblasts 11</td>
</tr>
<tr>
<td>CoRDS</td>
<td>Worldwide</td>
<td>---</td>
<td>This meeting</td>
<td>This meeting</td>
<td>This meeting</td>
<td>Pending</td>
</tr>
</tbody>
</table>
of Active NIH Grants: Key Search Word = “Hypersomnia”

NIH Funding with Direct Relevance to Hypersomnia

<table>
<thead>
<tr>
<th>Principal Investigator</th>
<th>Specialty</th>
<th>University</th>
<th>Grant Type</th>
<th>Start</th>
<th>End</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Plante</td>
<td>Psychiatry/Sleep</td>
<td>Wisconsin</td>
<td>K23</td>
<td>12/1/12</td>
<td>11/31/17</td>
<td>EEG/behavioral</td>
</tr>
<tr>
<td>L Trotti</td>
<td>Neurology/Sleep</td>
<td>Emory</td>
<td>K23</td>
<td>8/1/14</td>
<td>7/31/19</td>
<td>Neuroimaging</td>
</tr>
<tr>
<td>D Rye</td>
<td>Neurology/Sleep</td>
<td>Emory</td>
<td>R01</td>
<td>9/1/15</td>
<td>8/31/19</td>
<td>Multi-Disciplinary</td>
</tr>
<tr>
<td>J Cheung</td>
<td>Neurology/Sleep</td>
<td>Stanford</td>
<td>K23</td>
<td>9/25/17</td>
<td>8/31/22</td>
<td>Genetics</td>
</tr>
<tr>
<td>N Bohnen</td>
<td>Neurology/Radiology</td>
<td>Michigan</td>
<td>R01</td>
<td>7/15/17</td>
<td>4/30/21</td>
<td>PD/Neuroimaging</td>
</tr>
</tbody>
</table>
Pharmaceutical Industry Interest is Growing

Classification

As hypersomnia and hypsomolence are symptoms – and ones not unique to a single disease ...

might they be a disease in and of themselves (i.e., Sui generis)?

If so ...

how might that ‘disease’ be distinguished from others that share these symptoms?
Gélineau’s Syndrome

• Patients with attacks of sleep are common, whereas patients with attacks of sleep and cataplexy are relatively rare, and it would seem wise, for the present to regard the latter as a separate group.
• Since the term narcolepsy is often used rather loosely, confusion might be avoided by designating those cases presenting both attacks of sleep and cataplexy as Gélineau’s syndrome”.

Hypersomnia ≠ Narcolepsy

French physician Jean-Baptiste-Édouard Gélineau
Narcolepsy (from Fr. Narcolepsie) coined in 1880 from comb. form of Gk. narke "numbness, stupor" + lepsis "an attack, seizure."

Sir William Gowers
probably the greatest clinical neurologist of all time” – MacDonald Critchley, 1949: ‘Somnosis’ (circa 1890s)

Bedrich Roth
‘Sleep Drunkenness’ (1954)
‘Idiopathic Hypersomnia’ (1976)
Extending The Allegory

Whereas we can all agree that these are each apples (e.g., hypersomnia) – which is the Granny Smith (i.e., ‘idiopathic’ hypersomnia)? – which features allow us to make this distinction? – and with what level of confidence?

Indeed, Self-reported Hypersomnia is Common in The General Population:

- 8.4% report > 9 hours of sleep / 24 hr. period
- 1.6% report Excessive Quantity of sleep (> 9 hrs) and “deteriorated quality of wakefulness” (viz., unintended excessive sleepiness) related to it
- 0.5% Hypersomnia Disorder (per DSM-IV)
- 0.038% with Narcolepsy with cataplexy

Central Disorders of Hypersomnolence
International Classification of Sleep Disorders 3rd ed. (2014):

- **NT1** = Narcolepsy with cataplexy due to loss of hypocretin
- **NT2** = Narcolepsy without cataplexy
- **IH** = Idiopathic Hypersomnia
- **KLS** = Kleine-Levin Syndrome (episodic)

Other Hypersomnolence/hypersomnia related to medical or psychiatric conditions
ICSD-3 Criteria for Idiopathic Hypersomnia: Three Doorways to a Diagnosis

A. Irrepressible need to sleep or daytime lapses into sleep for at least 3 months
B. Cataplexy is absent
C. MSLT demonstrates ≤ 1 sleep onset REM-sleep periods
D. (1) MSLT demonstrates a mean latency to sleep of ≤ 8 minutes
 (2) 11 hours of sleep/24 hr by polysomnography
 (3) an average of 11 hours of sleep/24 hour by one week's actigraphy
E. Insufficient sleep is ruled out
F. Not better explained by medications, another sleep disorder, or medical or psychiatric disorder

Behind These 3 Doors do we Find the Same Patient?

A. Do patients 1, 2, and 3 describe a similar course of disease?
B. Are treatment(s) equally effective for each of the 3 patients?
C. Does a common biology hide behind each door?
The MSLT: More Objections than Benefits as a Diagnostic Gold Standard?
Commentary on Goldbart et al. Narcolepsy and predictors of positive MSLTs in the Wisconsin Sleep Cohort. SLEEP 2014 37:1043-1061.
Geert Mayer, MD,‡‡; Geri Jan Lammers, MD, PhD,*

Hypokinesia Köln, Schleswitz-Gmelin (Germany) / Department of Neurology, Philipps University, Marburg, Germany / Department of Neurology and Clinical Neuropsychiatry, Leiden University Medical Center, Leiden, The Netherlands / SleepWake Center SEIN, Hoornsele, The Netherlands

Test–Retest Reliability of the Multiple Sleep Latency Test in Central Disorders of Hypersomnolence
Rogio Lopez, MD, PhD;‡‡ Alihs Droukiat, MD; Lucie Bartkova, MD; Elisa Evangelista, MD; Isabella Jaussent, PhD; Yves Daviller, MD, PhD;‡‡

Test-Retest Reliability of the Multiple Sleep Latency Test in Narcolepsy without Cataplexy and Idiopathic Hypersomnia
Lynn Marie Trull, M.D., M.S.C.; Seth A. Taub, M.D.; Dara B. Rye, M.D., Ph.D.;

Program in Sleep, Department of Neurology, Emory University School of Medicine, Atlanta, GA.

The MSLT is Repeatable in Narcolepsy Type 1 But Not Narcolepsy Type 2: A Retrospective Patient Study
Chad Ruff; Fabio Pizzuta; Lynn Marie Trull; MD; Karel Sonka; MD; Stefano Vaci; MD;† Joseph Chesta; MD;†; Saundra Plass; MD;‡; Mai Elhen; Nanong Shikazjo; MD;‡; Fang Han; MD;‡; Paul Pappad; PhD; Sana Heimalma; MD;‡; Giuseppe Piazza; MD; PhD;‡; David Rye; MD, PhD; Emmanuel Mignet; MD, PhD;‡;
Many Non-complaining Population Controls as Well as Subjects with Chronic Fatigue Syndrome Meet MSLT Criteria for IH

Population-based control MSLTs (n=1019) courtesy of E. Mignot (Stanford Center of Narcolepsy Research) vs. CFS (n=46) from Wichita, KS (Reeves, W.C., et al., BMC Neurology, 2006. 6: p. 41).

Desperate Need for Alternate Diagnostic Strategies:

• MSLT exhibits poor specificity and only reasonable sensitivity in discriminating between central disorders of hypersomnolence, hypersomnolence that occurs in 'other' disorders, and population 'norms' without complaints of excessive or perpetual sleepiness.

• MSLT exhibits poor test-retest reliability – i.e., repeat testing often results in discordant results/diagnoses'

• MSLT is time, labor, and cost intensive

• Between laboratory differences in MSLT policies & procedures are substantial despite standard accreditation of testing laboratories
Payor/Market Trends (2013-2016) Also Emphasize Urgent Need For Alternate Diagnostic Strategies:

<table>
<thead>
<tr>
<th>Diagnostic Test</th>
<th>2013 rate (per 100K)</th>
<th>2016 rate</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysomnography (PSG)</td>
<td>677.6</td>
<td>583.6</td>
<td>↓13.9%</td>
</tr>
<tr>
<td>Multiple Sleep Latency Test (MSLT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance of Wakefulness Test (MWT)</td>
<td>17.2</td>
<td>13.4</td>
<td>↓22.1%</td>
</tr>
<tr>
<td>Home Sleep Apnea Testing (HSAT)</td>
<td>96.8</td>
<td>211.2</td>
<td>↑118.2%</td>
</tr>
</tbody>
</table>

New Tools Under Exploration to Diagnosis & Assess ‘Idiopathic’ Hypersomnia:

SUBJECTIVE:
- Hypersomnia Index
- Sleep Inertia Scale

OBJECTIVE:
- Extend sleep on diagnostic PSG
- Ad lib sleep/modified MSLT
- Ambulatory EEG (48-72 hr)
- Wearables (viz., actigraphy)
- EEG signatures (e.g., theta power)
- Psychomotor Vigilance (PVT)
- Critical Flicker Fusion
- Pupillometry
- Saccadic Eye Movement velocity
- Cognition
- Acute drug challenges (e.g., IV flumazenil)

BIOMARKERS:
- CSF – GABA-A
- CSF - proteomics
- CSF - metabolomics
- Genomics/Genetics
Relevant Examples at this APSS Meeting:

- Multimodal Hypersomnolence Assessment Substantially Increases Objective Identification of Hypersomnolence in Patients Referred for Multiple Sleep Latency Testing (Poster 0613)

- Working Memory and Psychomotor Vigilance Performance After Brief Naps in Hypersomnolent Patients: MSLT Correlates (Poster 0617)

- Improved Primary CNS Hypersomnia Diagnosis With Statistical Machine Learning (Poster 0627)

META-OPINION

Update on treatment for idiopathic hypersomnia

Elisa Evangelistaab, Régis Lopezabc and Yves Dauvilliersabc

aCentre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France; bInserm U1061, Montpellier, France; cUniversité de Montpellier, Montpellier, France

Article highlights

- Little is known about the pathophysiology, clinical characterization and treatment response of IH.
- Due to insufficient level of evidences, no treatment has currently an indication for the treatment of EDS in IH.
- Two recent well-designed studies confirmed the efficacy of modafinil for EDS in IH.
- Pitolisant and sodium oxybate are promising medications in IH.
- More specific tools are needed to better assess the severity of the symptoms of IH and the treatment responsiveness.

This box summarizes the key points contained in the article.
All 'idiopathic' hypersomnia

~ 35% refractory to wake promoting agents

Responsive to antagonism of GABA-A receptors

The GABA\textsubscript{A} Receptor is a Target for Many Allosteric Modulators – Both Exogenous and Endogenous; Both Positive and Negative

Mikko Uusi-Oukari and Esa R. Korpi
Pharmacological Reviews March 2010, 62 (1) 97-135;
Modulation of Vigilance in the Primary Hypersomnias by Endogenous Enhancement of GABA_A Receptors

David B. Rye, Donald L. Bliwise, Kathy Parker, Lynn Marie Trotti, Prabhjot Saini, Jacqueline Fairley, Amanda Freeman, Paul S. Garcia, Michael J. Owens, Andrew Jenkins

The biology underlying excessive daytime sleepiness (hypersomnia) is incompletely understood. After excluding known causes of sleepiness in 32 hypersomnolent patients, we showed that, in the presence of 10 μM γ-aminobutyric acid (GABA_A) cerebrospinal fluid (CSF) from these subjects stimulated GABA_A receptor function in vitro by 84.0 ± 47.9% (SD) relative to the 35.8 ± 7.5% (SD) stimulation obtained with CSF from control subjects (Student’s t test, t = 6.47, P < 0.0001; CSF alone had no effect on GABA_A signaling). The bioactive CSF component had a mass of 500 to 3000 daltons and was neutralized by trypsin. Enhancement was greater for α2 subunit- versus α1 subunit-containing GABA_A receptors and negligible for α4 subunit-containing ones. CSF samples from hypersomnolent patients also modestly enhanced benzodiazepine (BZD)-insensitive GABA_A receptors and did not competitively displace BZDs from human brain tissue. Flumazenil—a drug that is generally believed to antagonize the sedative-hypnotic actions of BZDs only at the classical BZD-binding domain in GABA_A receptors and to lack intrinsic activity—nevertheless reversed enhancement of GABA_A signaling by hypersomnolent CSF in vitro. Furthermore, flumazenil normalized vigilance in seven hypersomnolent patients. We conclude that a naturally occurring substance in CSF augments inhibitory GABA_A signaling, thus revealing a new pathophysiology associated with excessive daytime sleepiness.

Flumazenil Prescribing Data
(Pavilion Compounding Pharmacy, Atlanta, GA – March 2013/2016)

- Four (4) physicians: 344 individual subjects
- 45 subjects (13%) for at least 6 months continuously
- 18 subjects (5%) for at least 2 years continuously
- 89 additional prescribing physicians in the United States
- As of 2018 - > 100 prescribing physicians in the United States
- As of 2018 – 28 US physicians had prescribed to ≥ 5 unique patients

Novel Sleep-”lytic” Therapies Driven by Inhibiting GABA-A Receptor ‘Tone’:

- Flumazenil
- Clarithromycin
- Pentylenetetrazol (aka BTD-001; cardiazol; metrazol)
An Open-label Study of the Efficacy, Safety and Tolerability of Oral BTD-001 in Adults with Idiopathic Hypersomnia or Narcolepsy Type 2

Epworth Sleepiness Scale

D Rye et al Sleep Medicine, Volume 40, Supplement 1, December 2017, Pages e285-e286

Arise 2

- Coming soon to ~ 35 centers.
- Planned enrollment of 80 IH subjects (no NT2 as in ARISE 1).
- Double blind-crossover study lasting ~ 6 weeks (vs. 11-12 weeks in ARISE 1).
- Outcomes: ESS, Maintenance of Wakefulness Test, mental “fog” and additional.

Also monitor www.clinicaltrials.gov
Are There Disorders That Phenocopy Idiopathic Hypersomnia?

1. Prodigious Sleep
2. Blunted Vigilance/Cognition
3. Responsive To Flumazenil

A phenocopy is an instance whereas the phenotype (generally referring to a specific trait such as hypersomnia or hypersomnolence) is mimicked by another condition whose phenotype is genetically determined.

"We must analyze, and seek to interpret partnerships in disease."
Sir Jonathan Hutchinson (1828-1913)
a pioneer syndromologist

Yes! And That Translates to Leverage

Leverage – The ability to influence a system, or an environment, in a way that multiplies the outcome of one's efforts without a corresponding increase in the consumption of resources. (www.businessdictionary.com)

- Expands the number of clinical and basic science researchers
- New biological and genetic knowledge serve as a foundation for inquiry
- Brings potentially powerful novel animal models to the playing field
- Opens dialogue with additional new funding sources in industry & foundations
HYPERSOMNIA IN DYSTROPHIA MYOTONICA

BY

J. C. PHEMISTER and J. M. SMALL

From the Department of Neurology, The London Hospital

• Hypersomnia co-occurs with somnolence (EDS), but dominates the clinical picture
• Sleep Inertia – an “unmanageable liability to oversleep” – subjects needed to be “shaken awake in the morning”
• Bed times rarely later than 8:00 PM
• Hypersomnia fluctuated over weeks/months/years
• Seemingly unrelated to symptoms of muscle disease – predated myotonia in 1 of 4 subjects
• Distinct from narcolepsy
 • Absent cataplexy
 • Prodigious sleep amounts / 24 hours (such a propensity to sleep being atypical of narcolepsy)

Case OM011 - Improved in Many Domains for > 12 Months With Flumazenil

<table>
<thead>
<tr>
<th>FLUMAZENIL</th>
<th>Dependent Measure</th>
<th>OFF (March 2017)</th>
<th>ON (April 2017)</th>
<th>Clinically meaningful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epworth Sleepiness Scale</td>
<td>13</td>
<td>5</td>
<td>△ 3-4</td>
<td></td>
</tr>
<tr>
<td>Functional Outcomes of Sleep (5-20)</td>
<td>9.96</td>
<td>18.70</td>
<td>△ 2-3</td>
<td></td>
</tr>
<tr>
<td>Multidimensional Fatigue Inventory (0-100)</td>
<td>66</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Fatigue (5-20)</td>
<td>17</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Fatigue (5-20)</td>
<td>17</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Activity (5-20)</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue Severity Scale (7-63)</td>
<td>57</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Inertia Questionnaire (0-20)</td>
<td>14.6</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypersomnia Severity Index (0-36)</td>
<td>32</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case KM031 – Improved in Many Domains With Flumazenil >> Armodafinil (Nuvigil®)

CASE KM031

<table>
<thead>
<tr>
<th>Dependent Measure</th>
<th>Off Rx (Jan 2018)</th>
<th>Armodafinil 250mg QAM (Feb 2018)</th>
<th>ON Flumazenil (no Armodafinil March 2018)</th>
<th>Clinically meaningful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epworth Sleepiness Scale (0-24)</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>Δ 3-4</td>
</tr>
<tr>
<td>Functional Outcomes of Sleep (5-20)</td>
<td>16.3</td>
<td>16.9</td>
<td>19.4</td>
<td>Δ 2-3</td>
</tr>
<tr>
<td>Multidimensional Fatigue Inventory (0-100)</td>
<td>52</td>
<td>44</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>General Fatigue</td>
<td>13</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Mental Fatigue</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reduced Activity</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fatigue Severity Scale (7-63)</td>
<td>54</td>
<td>47</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sleep Inertia Questionnaire (0-20)</td>
<td>14.9</td>
<td>14.7</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Hypersomnia Severity Index (0-36)</td>
<td>26</td>
<td>25</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

GABA axis perturbation in Myotonic Dystrophy - a two hit hypothesis:

- 4 of 4 DM1 patient CSFs exhibit endozepine-like activity
- γ_2 subunit of GABA$_A$ receptors is mis-spliced in human and murine brain (Goodwin et al., 2015; Sergeant, Wang & Swanson; unpublished)
- γ_2S(short/fetal) is more abundant than γ_2L (long/adult) in human DM1 brains and mouse models of DM1
- GABA$_A$ receptors are more sensitive to benzodiazepines (Quinlan, Firestone and Homanics; 2000)
Disorder | Offending Agent(s) | Flumazenil Responsive | Clinical Development/Trials

<table>
<thead>
<tr>
<th>Idiopathic Hypersomnia/Nt2</th>
<th>Endozepine “like” substance</th>
<th>Proportion – (~40-60%)</th>
<th>YES – BTD-001 (Pentylenetetrazol) Balance Therapeutics YES – GR3027 (Umecrine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotonic Dystrophy</td>
<td>Endozepine “like” substance; GABA-A receptor γ2 subunit mis-splicing</td>
<td>(Seemingly)</td>
<td>YES – Flumazenil (open-label) & complementary studies</td>
</tr>
<tr>
<td>Hepatic Encephalopathy</td>
<td>“Endozepines” and Neurosteroids e.g., - allopregnanolone; THDOC</td>
<td>YES</td>
<td>YES - GR3027 (Umecrine)</td>
</tr>
</tbody>
</table>
Clinical Trials for Idiopathic Hypersomnia:

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Location</th>
<th>Population</th>
<th>Study Type</th>
<th>Compound</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>United States</td>
<td>IH & NT2</td>
<td>Phase IIB</td>
<td>BTD-001</td>
<td>June 2018 (recruiting) ----N=80</td>
</tr>
<tr>
<td>Umecrine</td>
<td>Scandanavia</td>
<td>IH</td>
<td>Phase IIA</td>
<td>GR3027</td>
<td>Ongoing</td>
</tr>
<tr>
<td>JAZZ</td>
<td>United States</td>
<td>IH</td>
<td>Phase III</td>
<td>JZP-258</td>
<td>Sept. 2018 (recruiting) ----N=140</td>
</tr>
</tbody>
</table>

Other Registered Clinical “Trials”

Transcranial Direct Current Stimulation for Central Hypersomnia without cataplexy (tDCS)
United States, Ohio State University

The Role of the Circadian System in Neurological Sleep-wake Disorders (PNP)
Switzerland, University of Zurich

Importance of Sleep Deprivation in Differential Diagnosis of Primary Hypersomnia (Actisom dépistage)
France, Centre d’Investigation Clinique et Technologique 805

source: ClinicalTrials.gov
Where Else Now?

• What is the chemical nature and source of endozepine-like activity?

• Where are the critical molecular sites of action for this endozepine at the GABA-A receptor and which subunits are engaged?

• What brain regions underly hypersomnia & associated symptoms inclusive of treatment efficacy?

• Are there genetic underpinnings to hypersomnia?

• Who is the target population and which symptoms are most tractable to treatment with GABA_A receptor antagonists?

Proteomics of cerebrospinal fluid reveals a greater abundance of protein fragments in flumazenil responding patients versus non-complaining controls
What Gene Variants Differentiate Idiopathic Hypersomnia From The General Population

Finding a gene by genome wide association

Idiopathic Hypersomnia has Come a Very Long Way in a Relatively Short Period of Time:

1. A subgroup of patients refractory to traditional wake promoting medications exhibit a new biology with extra-ordinary diagnostic and treatment implications with potential broader relevance to the symptom of hypersomnia encountered in several other human diseases.

2. We have a growing number of new partners in our goal to meet an unmet clinical need by way of increasing awareness and encouraging discovery science. Clinician Scientists // Basic Science Researchers // Industry // Disease Foundations

3. Ongoing and anticipated clinical trials continue to grow in number

4. A passionate and engaged Hypersomnia Foundation & community continues to grow and provide a strong voice in public discourse.
WE Still Have a Lot To Do – Most Critically, In Anticipating “a” Treatment

What Will the Package Insert Say We Are Treating?

• “Once recognized, (disease) entities present problems in naming—and names are important”.

• “A syndrome has ‘arrived’ if it has a name”.

• “An unfortunate consequence of naming can be the mistaken impression that we understand the condition”.

• “Differences in the phenotype are the most treacherous basis for decisions (... especially when heterogeneity/diversity is generally acknowledged ...).”

Victor A. McKusick - On Lumpers and Splitters, or the Nosology of Genetic Disease in: Perspectives in Biology and Medicine · Winter 1969

Thank you supporters!

Individual patient contributions
Woodruff Health Sciences Research Fund
American Sleep Medicine Foundation (LMT)
National Institutes of Health: NS055015-(03S1)(DR);
K23-NS083748 (LMT); R01-NS089719 (DR)
Mind Science Foundation (DR)
Marigold Foundation (DR)
Acknowledgements

Emory Program in Sleep
Lynn Marie Trotti MD-MSc
Prabhjyot Saini MSc
Donald Bliwise PhD
Amanda Freeman PhD
Glenda Keating PhD
Jacqueline Fairley PhD
Justus Schwabedal PhD
Caroline Maness MD
Nigel Pederson MD
John Willie MD-PhD
Nursing & Technical Staff

Emory Dept. of Pathology
James Ritchie MD

Emory Dept. of Anesthesiology
Andrew Jenkins PhD
Paul Garcia MD-PhD
O Moody PhD

Emory Dept. of Biochemistry
Nicholas Seyfried PhD
Eric Dammer PhD

Emory Dept. Of Biology
Gary Bassell PhD

Emory Dept. of Psychiatry
Michael Owens PhD

Boston Univ. Dept. of Physics
Plamen Ivanov PhD
Ronny Bartsch PhD

Hospital Clinic de Barcelona
Alex Iranzo MD
J Santamaría MD

Univ. of Florida
Eric Wang PhD